UNIVERSITAS PATTIMURA

Hallo Guys Welcome to My Blog

Minggu, 20 Desember 2020

RELASI DAN FUNGSI


Pengertian Relasi dan Fungsi

Relasi dan fungsi adalah dua hal yang berbeda. Relasi belum tentu fungsi, sedangkan fungsi sudah pasti relasi. Relasi adalah hubungan antara dua himpunan, yaitu himpunan A dan himpunan B. 

Jika anggota dari suatu himpunan dapat dipasangkan dengan anggota himpunan lain sehingga pemasangan tersebut menghasilkan suatu hubungan, maka hubungan tersebut disebut relasi. 

Suatu relasi R dari himpunan A ke himpunan B membutuhkan suatu hubungan berupa kalimat terbuka yang menyatakan hubungan a anggota himpunan A dengan b anggota himpunan B, sehingga (a, b) anggota A x B. 

Relasi R dari himpunan A ke himpunan B dituliskan R : A → B. Suatu relasi dapat dinyatakan dengan himpunan pasangan berurutan, diagram panah dan koordinat Cartesius. Fungsi adalah suatu relasi antara dua himpunan misalkan himpunan A dengan himpunan B, dimana anggota himpunan A dipetakan ke himpunan B. 

Himpunan A disebut domain (daerah asal) dan himpunan B disebut kodomain (daerah kawan). Setiap anggota domain memiliki pasangan dan hanya berpasangan tepat satu kali dengan anggota kodomain. 

Himpunan anggota kodomain yang merupakan pasangan atau peta dari anggota domain disebut range atau daerah hasil. Jika ada anggota domain (daerah asal) yang tidak berpasangan, maka relasi tersebut bukanlah fungsi. 

Begitu juga jika ada anggota domain yang berpasangan lebih dari sekali atau dengan kata lain memiliki pasangan lebih dari satu, maka relasi tersebut bukanlah fungsi. Himpunan anggota kodomain yang merupakan pasangan (peta) dari anggota domain disebut daerah hasil (range). 

Range adalah himpunan bagian dari kodomain. Kadang-kadang seluruh anggota kodomain adalah range (daerah hasil). Jika seluruh anggota kodomain merupakan range, dan relasinya merupakan fungsi, maka fungsi tersebut adalah fungsi surjektif. 

Jika tidak semua anggota kodomain merupakan range, dan relasinya merupakan fungsi, maka fungsi tersebut adalah fungsi into atau fungsi ke dalam. Perhatikan diagram berikut!













Diagram diatas merupakan fungsi, karena seluruh anggota himpunan A (domain) memiliki pasangan di B (kodomain) dan setiap anggota domain hanya dipasangkan sebanyak satu kali. {a, b} disebur daerah hasil (range). Perhatikan diagram berikut!













Diagram diatas merupakan fungsi, karena seluruh anggota himpunan A (domain) memiliki pasangan di B (kodomain) dan setiap anggota domain hanya dipasangkan sebanyak satu kali. {a, c} disebur daerah hasil (range). Perhatikan diagram berikut!













Diagram diatas bukanlah fungsi, karena ada anggota domain yang tidak berpasangan. Perhatikan diagram berikut!













Diagram diatas bukanlah fungsi karena ada anggota domain yang dipasangkan lebih dari satu kali. Relasi R disebut fungsi, jika setiap anggota dari himpunan A dapat dipasangkan tepat dengan satu anggota himpunan B. Bentuk relasi tersebut dapat dituliskan dalam notasi fungsi: f : A → B.

Jika x anggota A dipetakan ke y anggota B oleh fungsi f, maka fungsi f dapat dinyatakan dengan f : x → y atau y = f(x). Bentuk penulisan bentuk y=f(x), x disebut variabel bebas dan y disebut variabel terikat. 

Variabel bebas adalah variabel yang nilainya bebas untuk dipilih dan ditentukan dari domain fungsi f. Variabel terikat adalah variabel yang nilainya tergantung dari variabel bebas. Sama seperti relasi, suatu fungsi juga dapat dinyatakan dalam tiga bentuk, yaitu diagram panah, pasangan berurutan, dan koordinat Cartesius. 

Banyaknya pemetaan yang mungkin dari himpunan A ke himpunan B ditentukan oleh banyaknya anggota himpunan A dan himpunan B. Jika banyak anggota himpunan A adalah p, dan banyak anggota himpunan B adalah q, maka banyaknya pemetaan dari himpunan A ke himpunan B adalah 

Sedangkan banyaknya pemetaan dari himpunan B ke himpunan A adalah . Berdasarkan cara berpasangan antara anggota domain dengan anggota kodomain, fungsi memiliki sifat-sifat yang dapat dibagi atas 4 bagian, yaitu fungsi into, fungsi surjektif atau onto, fungsi injektif, dan fungsi bijektif.


Pengertian Fungsi Into

Fungsi Into dapat dikenali dengan mengamati daerah kodomain. Seperti yang sudah dijelaskan diatas, bahwa range adalah himpunan bagian dari kodomain. Jadi anggota kodomain belum tentu semuanya masuk anggota range. Jika anggota kodomain tidak seluruhnya berpasangan dengan anggota domain, maka fungsi tersebut adalah fungsi into atau fungsi ke dalam. Perhatikan diagram berikut!













Diagram di atas adalah fungsi into, bukan fungsi surjektif karena tidak semua anggota kodomain memiliki pasangan. Terlihat bahwa range adalah {a, c} sementara kodomain adalah {a, b, c}. Tidak semua anggota kodomain merupakan range. Bukan fungsi injektif, karena ada anggota kodomain yang memiliki pasangan lebih dari satu, sehingga bukan fungsi satu-satu.


Pengertian Fungsi Surjektif atau Onto

Fungsi Surjektif atau fungsi onto atau fungsi kepada adalah suatu fungsi dimana seluruh anggota kodomain memiliki pasangan. Anggota kodomain boleh berpasangan lebih dari sekali. Seluruh anggota kodomain merupakan range (daerah hasil). Perhatikan diagram berikut!













Diagram diatas adalah fungsi surjektif atau fungsi onto, karena semua anggota kodomain memiliki pasangan. Bukan fungsi injektif, karena ada anggota kodomain yang memiliki pasangan lebih dari satu.



Pengertian Fungsi Injektif

Fungsi injektif atau fungsi satu-satu adalah fungsi yang memasangkan anggota domain dengan anggota kodomain sehingga setiap anggota domain memiliki pasangan yang berbeda dan pasangannya hanya satu di kodomain. Perhatikan diagram berikut!













Diagram diatas adalah fungsi injektif. Fungsi injektif haruslah relasi satu-satu. Anggota kodomain tidak harus memiliki pasangan, asalkan anggota domain masing-masing memiliki pasangan.


Pengertian Fungsi Bijektif

Fungsi bijektif adalah fungsi injektif sekaligus fungsi surjektif. Fungsi Bijektif disebut juga fungsi korespondensi satu-satu. Semua anggota kodomain berpasangan dengan anggota domain dan setiap anggota domain memiliki pasangan yang berbeda. Masing-masing anggota hanya berpasangan satu kali. Perhatikan diagram berikut!














Diagram di atas adalah fungsi bijektif. Semua anggota kodomain memiliki pasangan dan tiap-tiap anggota kodomain hanya dipasangkan satu kali. Suatu korespondensi satu-satu hanya mungkin terjadi jika banyaknya anggota himpunan A sama dengan banyaknya anggota himpunan B. 

Jika banyak anggota himpunan A adalah p, maka banyak anggota himpunan B haruslah p. Banyaknya korespondensi satu-satu dari A ke B adalah p!=p(p1).(p2).(p3)....3.2.1



sumber :

https://www.maretong.com/2018/12/fungsi.html





Tidak ada komentar:

Posting Komentar